Solar DC, a project spearheaded by IIT Madras, is touted to transform society the same way electricity did.
In an attempt to address the issue of energy poverty and make uninterrupted power accessible to all, the Solar DC team from the
See more
Solar DC, a project spearheaded by IIT Madras, is touted to transform society the same way electricity did.
In an attempt to address the issue of energy poverty and make uninterrupted power accessible to all, the Solar DC team from the Indian Institute of Technology (IIT) Madras, spearheaded by Prof. Ashok Jhunjhunwala, in conjunction with industrial partners, began work on solar-powered direct-current (DC) micro-grids.
The idea is very simple. Have an internal distribution line with DC appliances running on DC power, and utilize solar panels and batteries which are inherently DC. Since this marries the energy-efficient DC technology with solar power solution, the size of the system falls drastically. This translates to energy and cost savings of about 50 % compared to conventional solar power solutions available today.
For homes not connected to the grid, a 125-watt micro-grid with a solar panel backed up by a small battery can supply all the electricity. For connected households, the micro-grid acts as a backup power supply to let lighting, fans, TV sets, and cellphone chargers continue operating even during brownouts. Solar DC power generation is a disruptive concept which challenges the current business model of generation and distribution.
Solar DC Inverterless technology solution is the need of the hour, which proposes a new market architecture where the concepts of generating at point-of-use, minimal transmission costs, and storing electricity for later consumption are redefined and instigated. The largest Solar DC Inverterless deployment to date involves 71 villages in Rajasthan, where the team has been working with the utility company Jodhpur Vidyut Vitaran Nigam Limited (JVVNL), the Rural Electrification Corporation, India, and the Ministry of Power to electrify 4,000 off-grid homes.
This project has proven to be a game-changer for JVVNL, as for the conventional power grid to reach these remote villages, it would require building substations and power lines, a difficult and economically unfeasible proposition given the uneven terrain, long distances, and occasional sere sandstorms. Details of many other Solar DC Inverterless installations could be found online.
A typical Solar DC Inverterless system comes with a 125-W solar panel, a specially designed 1-kWh lead-acid battery with an expected life span of 1,600 cycles (compared to about 800 cycles for a normal battery), and an Inverterless controller box. This would be enough to power a full-size DC fan, a dimmable LED tube light, an LED lightbulb, and a cellphone charger. The homeowner can add extra lights or a TV set, as long as the overall system sizing is done appropriately. The entire system’s manufacture and installation costs a fraction of traditional grid electrification. A grid-connected home where power is unreliable can benefit from having a separate DC line, which provides about 10 % of the usual household load during brownouts.
For villages like Bhoomji ka Gaon and Belagavadi, conventional electrification is many years away, at best. In the meantime, DC appliances will keep getting better. A wider range of products will come to market, including evaporative coolers, small DC refrigerators, and solar stoves. Solar panels, batteries, and other micro-grid components will continue to become cheaper and more efficient. In the end, the villagers may find that their off-grid systems providing all that they need.
These small interventions have gone ahead to prove that technology is definitely an enabler in transforming the quality of life. A modest level of access to electricity has shown to have positively impacted the lives of several thousands. They now enjoy comforts, conveniences, and security that they never thought they’d have. Technological breakthroughs can bring about change by making cities and villages livable, equitable, and sustainable. IIT Madras has also been encouraging startups in the renewable energy and cleantech domain under the aegis of Prof. Bhaskar Ramamurthi and Prof. Ashok Jhunjhunwala.
Manufacturing of standard solar components is a small part of a larger emerging industry. Inverterless, application monitoring software, storage systems, domestic and commercial building energy management systems, and smart meters are some of the areas that startups like Cygni Energy, Chakra Networks, Swadha Energy, and Zazen Systems, among others, are working on. Just as electricity transformed many industries roughly 100 years ago, Solar DC will also now change nearly every major industry. Better healthcare, transportation, entertainment, and manufacturing will enrich the lives of countless people.